The keyword __attribute__ allows you to specify special attributes of struct and union types when you define such types. This keyword is followed by an attribute specification inside double parentheses. Three attributes are currently defined for types: aligned, packed, and transparent_union. Other attributes are defined for functions (see Section 2.22.) and for variables (see Section 2.28.).
You may also specify any one of these attributes with "__" preceding and following its keyword. This allows you to use these attributes in header files without being concerned about a possible macro of the same name. For example, you may use __aligned__ instead of aligned.
You may specify the aligned and transparent_union attributes either in a typedef declaration or just past the closing curly brace of a complete enum, struct or union type definition and the packed attribute only past the closing brace of a definition.
This attribute specifies a minimum alignment (in bytes) for variables of the specified type. For example, the declarations:
struct S { short f[3]; } __attribute__ ((aligned (8))); typedef int more_aligned_int __attribute__ ((aligned (8)));
force the compiler to insure (as far as it can) that each variable whose type is struct S or more_aligned_int will be allocated and aligned at least on a 8-byte boundary. On a Sparc, having all variables of type struct S aligned to 8-byte boundaries allows the compiler to use the ldd and std (doubleword load and store) instructions when copying one variable of type struct S to another, thus improving run-time efficiency.
Note that the alignment of any given struct or union type is required by the ANSI C standard to be at least a multiple of the lowest common multiple of the alignments of all of the members of the struct or union in question. This means that you can effectively adjust the alignment of a struct or union type by attaching an aligned attribute to any one of the members of such a type, but the notation illustrated in the example above is a more obvious, intuitive, and readable way to request the compiler to adjust the alignment of an entire struct or union type.
As in the preceding example, you can explicitly specify the alignment (in bytes) that you wish the compiler to use for a given struct or union type. Alternatively, you can leave out the alignment factor and just ask the compiler to align a type to the maximum useful alignment for the target machine you are compiling for. For example, you could write:
struct S { short f[3]; } __attribute__ ((aligned));
Whenever you leave out the alignment factor in an aligned attribute specification, the compiler automatically sets the alignment for the type to the largest alignment that is ever used for any data type on the target machine you are compiling for. Doing this can often make copy operations more efficient, because the compiler can use whatever instructions copy the biggest chunks of memory when performing copies to or from the variables that have types that you have aligned this way.
In the example above, if the size of each short is 2 bytes, then the size of the entire struct S type is 6 bytes. The smallest power of two that is greater than or equal to that is 8, so the compiler sets the alignment for the entire struct S type to 8 bytes.
Note that although you can ask the compiler to select a time-efficient alignment for a given type and then declare only individual stand-alone objects of that type, the compiler's ability to select a time-efficient alignment is primarily useful only when you plan to create arrays of variables having the relevant (efficiently aligned) type. If you declare or use arrays of variables of an efficiently-aligned type, then it is likely that your program will also be doing pointer arithmetic (or subscripting, which amounts to the same thing) on pointers to the relevant type, and the code that the compiler generates for these pointer arithmetic operations will often be more efficient for efficiently-aligned types than for other types.
The aligned attribute can only increase the alignment; but you can decrease it by specifying packed as well. See below.
Note that the effectiveness of aligned attributes may be limited by inherent limitations in your linker. On many systems, the linker is only able to arrange for variables to be aligned up to a certain maximum alignment. (For some linkers, the maximum supported alignment may be very very small.) If your linker is only able to align variables up to a maximum of 8 byte alignment, then specifying aligned(16) in an __attribute__ will still only provide you with 8 byte alignment. See Part IV in GCC-ERC32 User's Guide, for further information.
This attribute, attached to an enum, struct, or union type definition, specified that the minimum required memory be used to represent the type.
Specifying this attribute for struct and union types is equivalent to specifying the packed attribute on each of the structure or union members. Specifying the -fshort-enums flag on the line is equivalent to specifying the packed attribute on all enum definitions.
You may only specify this attribute after a closing curly brace on an enum definition, not in a typedef declaration, unless that declaration also contains the definition of the enum.
This attribute, attached to a union type definition, indicates that any function parameter having that union type causes calls to that function to be treated in a special way.
First, the argument corresponding to a transparent union type can be of any type in the union; no cast is required. Also, if the union contains a pointer type, the corresponding argument can be a null pointer constant or a void pointer expression; and if the union contains a void pointer type, the corresponding argument can be any pointer expression. If the union member type is a pointer, qualifiers like const on the referenced type must be respected, just as with normal pointer conversions.
Second, the argument is passed to the function using the calling conventions of first member of the transparent union, not the calling conventions of the union itself. All members of the union must have the same machine representation; this is necessary for this argument passing to work properly.
Transparent unions are designed for library functions that have multiple interfaces for compatibility reasons. For example, suppose the wait function must accept either a value of type int * to comply with Posix, or a value of type union wait * to comply with the 4.1BSD interface. If wait's parameter were void *, wait would accept both kinds of arguments, but it would also accept any other pointer type and this would make argument type checking less useful. Instead, <sys/wait.h> might define the interface as follows:
typedef union { int *__ip; union wait *__up; } wait_status_ptr_t __attribute__ ((__transparent_union__)); pid_t wait (wait_status_ptr_t);
This interface allows either int * or union wait * arguments to be passed, using the int * calling convention. The program can call wait with arguments of either type:
int w1 () { int w; return wait (&w); } int w2 () { union wait w; return wait (&w); }
With this interface, wait's implementation might look like this:
pid_t wait (wait_status_ptr_t p) { return waitpid (-1, p.__ip, 0); }
When attached to a type (including a union or a struct), this attribute means that variables of that type are meant to appear possibly unused. The compiler will not produce a warning for any variables of that type, even if the variable appears to do nothing. This is often the case with lock or thread classes, which are usually defined and then not referenced, but contain constructors and destructors that have nontrivial bookkeeping functions.
To specify multiple attributes, separate them by commas within the double parentheses: for example, "__attribute__ ((aligned (16), packed))".